Mohammad Reza Fassihi and Tony Kovscek
2017
306 pp.; Softcover
SPE Monograph Series Vol. 27
ISBN: 978-1-61399-475-7
QtyPriceRetail
Price USD 240.00Retail USD 240.00Add to CartAdd to Wishlist

Description 

Login To See SPE Member Price USD 120

Low-Energy Processes for Unconventional Oil Recovery
fills a gap in oil and gas literature.  Today, in our globalized society, the oil industry has to demonstrate how oil recovery can be done responsibly over the life-cycle of the project, clearly articulating energy efficiency as well as limiting CO2 and environmental footprints of the chosen recovery processes.  The authors bring together their complementing expertise to provide the reader with an in-depth discussion of a range of alternative recovery techniques.  Most recovery methods included are focused on heavy oil recovery, but some have applications in light oil reservoirs as well.  With the recent industry drive and focus to recover hydrocarbons from tight rock and shale resources, a chapter has also been devoted to shale oil recovery.

Watch a video of the authors explaining why they wrote this new book.

Similar Products

Dr. Reza Fassihi is a distinguished advisor with BHP in Houston and is responsible for subsurface technical assurance on global projects.  Prior to this he was the unconventional technology manager with BP. He has over 30 years of experience in petroleum research, development and reservoir management, including waterflood and EOR projects, and he has co-authored more than 40 papers on a broad range of petroleum engineering and research subjects.  He obtained a PhD degree in petroleum engineering from Stanford University. 

Dr. Tony Kovscek is professor at Stanford University since 1996 and is the Keleen and Carlton Beal Professor as well as the current chairman of the Energy Resources Department.  His PhD research was in chemical engineering at the University of California at Berkeley.  He has authored over 100 peer-reviewed publications, mainly focusing on enhanced recovery processes for unconventional resources. 

Table of Contents

Preface

Chapter 1  The Challenges of Unconventional Oil Recovery

1 1.1   Overview   1

1.1.1   Unconventional Hydrocarbons   1

1.1.2   Unconventional Oil Resource Base   2

1.1.3   Natural Bitumen and Extra-Heavy Oil   4

1.1.4   Oil Shale   4

1.1.5   Problems With Unconventional Oil   5

1.1.6   Development Planning   8

1.1.7   Technology Landscape for Heavy-Oil and Bitumen Production   9

1.1.8   Effectiveness of Current Depletion Technologies   11

1.1.9   Integrated Approach to Heavy-Oil Production   11

1.1.10   Monograph Summary  11

 

Chapter 2 Unconventional Oil Recovery Methods  13

2.1   Introduction   13

2.2   Primary Recovery   13

2.3   Enhanced Oil Recovery   15

2.3.1   Steam   15

2.3.2   Thermal Recovery Mechanisms   19

2.3.3   Polymer Floods   23

2.3.4   Solvent Injection  23

2.3.5   Other methods   24

2.4   Recovery Sequencing   24

2.5   Resource Screening   24

2.5.1   Thermal Recovery   25

2.5.2   Steam Injection   25

2.5.3   Air Injection   26

2.5.4   Application   27

 

Chapter 3   Fluid and Rock Properties      29

3.1   Introduction   29

3.2   Oil-Phase Properties   29

3.2.1   What Makes a Heavy Oil So Viscous?   29

3.2.2   The Role of Solution Gas   31

3.2.3   The Role of Asphaltenes and Maltenes   32

3.2.4   The Role of Organic Acids and Bases   32

3.2.5   Oil Shale Properties   34

3.3   Oil-Phase Characterization   34

3.3.1   Crude-Oil Description   35

3.3.2   Estimation of the Steam Distillation Yield   36

3.3.3   Comparison With the Published Results   38

3.3.4   Calculation of the Molecular Weight of the Distillate   41

3.3.5   Effect of Steam Distillation Efficiency   42

3.4   Rock Properties   45

3.4.1   Volumetric Heat Capacity   45

3.4.2   Thermal Conductivity   46

3.4.3   Porosity and Permeability   47

3.5   The Role of Wettability   47

3.6   The Role of Mineral Solubility   48

3.7   Other Properties   49

 

Chapter 4   Cold Heavy-Oil Production       51

4.1   Introduction   51

4.2   Cold Heavy-Oil Production Mechanisms   51

4.3   Production Behavior in Cold Heavy-Oil Production With Sand   55

4.4   The SuperSump Concept   56

4.5   Cold Heavy-Oil Production With Sand—Case Studies   58

4.5.1   Kuwait   58

4.5.2   Alaska   58

4.5.3   Sudan   60

4.6   Cold Heavy-Oil Production With Sand Modeling   61

4.7   Cold Heavy-Oil Production Optimization   63

 

Chapter 5  Cold Enhanced Recovery   67

5.1   Waterflooding Heavy- and Viscous-Oil Reservoirs   67

5.1.1   Mobility Ratio Effects   67

5.1.2   Viscous Instability   68

5.1.3   Fractional Flow Calculations   69

5.1.4   Viscous-Oil Analog Fields   70

5.2   Polymer Flooding   71

5.2.1   Polymer Displacement Efficiency   75

5.2.2   Screening Criteria for Polymer Flooding   78

5.2.3   Field Application of Polymer Flooding   78

5.3   Emulsion Flooding   80

5.4   Gas or Water-Alternating-Gas Injection   83

5.4.1   Screening Criteria for CO2 Injection   85

5.5   Voidage-Replacement Ratio   86

 

Chapter 6   Enhanced Steam Injection      89

6.1   Cyclic Steam and Steamflooding   89

6.1.1   Wellbore Heat Losses   89

6.1.2   Carbon Intensity   90

6.2   Steam Foam   91

6.3   Steam-Assisted Gravity Drainage   93

6.3.1   Mathematical Derivation   93

6.3.2   Factors Affecting SAGD Performance   94

6.3.3   Surveillance Techniques   97

6.3.4   SAGD Optimization   98

6.3.5   Numerical Modeling of SAGD With Solvents   109

6.4   Steam-Assisted Gravity Drainage With Noncondensible Gas   113

6.4.1   SAGD Optimization With Air Injection   113

6.5   Solvent-Based Recovery Processes   114

6.5.1   Vapor Extraction   114

6.5.2   Nsolv   114

 

Chapter 7   Enhanced Air Injection     117

7.1   Introduction   117

7.2   The Benefits of Air Injection   118

7.3   Process Mechanisms   119

7.3.1   In-Situ Combustion   119

7.3.2   High-Pressure Air Injection   120

7.3.3   Fuel Combustion   120

7.3.4   Thermal Alteration   121

7.3.5   Low-Temperature Oxidation   122

7.3.6   Steam Distillation and Light-Oil Stripping   124

7.3.7   Application to Light Oil   125

7.3.8   Spontaneous Ignition   126

7.3.9   Impact of Pressure on Displacement Mechanisms   126

7.4   Process Implementation   127

7.4.1   Screening   127

7.4.2   Engineering Estimation   128

7.4.3   Laboratory Experimentation   131

7.4.4   Fluid Characterization   134

7.5   Numerical Modeling   136

7.5.1   Reaction Model   136

7.5.2   Simulation of Combustion-Tube Runs   138

7.5.3   Simulation Results   138

7.5.4   Scaling the Combustion-Tube Results   139

7.6   Economic Feasibility   139

7.7   Pilot Testing   140

7.8   Field Applications   141

7.8.1   Design Features of Canadian ISC Projects   141

7.8.2   Injection Schemes   142

7.8.3   Suplacu de Barcau Field, Romania   143

7.8.4   Balol and Santhol Fields, India   143

7.8.5   Hybrid Processes   144

7.8.6   Post-Cold-Heavy-Oil-Production-With-Sand and Post-SAGD Combustion   144

7.8.7   In-Situ Upgrading   145

7.9   Air Injection in Light-Oil Reservoirs   145

7.9.1   High-Pressure Air Injection   146

7.9.2   Enriched-Air Injection   148

7.9.3   Cyclic Combustion   148

7.9.4   Other Fields   149

7.10   Process Characteristics and Monitoring   149

7.11   Performance Estimation   150

7.11.1   Nelson and McNeil Methodology   150

7.11.2   Gates-Ramey Correlation   150

7.12   Field Case Histories   152

7.12.1   Medicine Pole Hills Unit Air Injection Project   152

7.12.2   West Hackberry Air Injection Project   154

7.12.3   Morgan Pressure Cycling In-Situ Combustion Project   158

7.12.4   Holt Sand Unit Oxygen Injection   163

7.13   Environmental Considerations   172

7.13.1   Thermal Efficiency   172

7.13.2   CO2 Production   173

7.13.3   CO2 Sequestration   173

7.13.4   Larger Applicability   173

7.14   Promising Research Potential   174

7.15   Conclusions   174

 

Chapter 8 Alternative Sources for Heating Reservoirs   175

8.1   Nuclear Energy   175

8.1.1   Economic and Cost Issues   176

8.1.2   Public Perception of Nuclear Energy   176

8.2   Solar Thermal Enhanced Oil Recovery   177

8.3   Downhole Heating   180

8.4   In-Situ Upgrading   183

8.4.1   In-Situ Conversion Process   183

8.4.2   ElectrofracTM Process   184

8.4.3   Conduction, Convection, and Reflex Process   185

8.5   Electromagnetic Heating   185

8.5.1   Energy Equivalence   185

8.5.2   Methods for Field Application  186

8.5.3   Analytical Modeling of Electromagnetic Heating Process  187

8.6   How To Increase the Energy Efficiency of New Processes   189

 

Chapter 9 Challenges in Reservoir Simulation of Unconventional Technologies  191

9.1   Introduction   191

9.2   Mass and Heat Transport   191

9.2.1   Auxiliary Relationships   193

9.2.2   Stiffness and Grid-Size Limitations   194

9.3   Inclusion of Geomechanics   195

9.3.1   Decoupled Flow and Geomechanics   196

9.3.2   Explicitly Coupled Flow   196

9.3.3   Iteratively Coupled Flow   196

9.3.4   Fully Coupled Flow   197

9.4   Designing the Simulation Model   197

9.4.1   Number of Dimensions   198

9.4.2   Selection of Pseudocomponents199

9.5   Simulating Processes for Unconventional Systems   199

9.5.1   Chemical Flooding   199

9.5.2   In-Situ Combustion   200

9.5.3   Steam Injection   201

9.5.4   Steam-Assisted-Gravity-Drainage Simulation   203

9.5.5   Cold Heavy-Oil Production With Sand   203

9.5.6   Electromagnetic Heating Simulation   204

9.6   History Matching   205

 

Chapter 10    Facilities and Operations          207

10.1   Introduction  207

10.2   Processing Technology Challenges   207

10.3   Steam Generation, Delivery, and Transportation   208

10.4   Water Supply and Treatment for Steam Generation   210

10.5   CO2 Sequestration and Management   210

10.5.1   Life-Cycle Emissions   210

10.6   Gathering Systems and Export Pipelines   211

10.6.1   Oil/Water Separation   213

10.7   Surface Sand Management   213

10.8   Air and Gas Compression    215

10.8.1   Explosion in the Reservoir   216

10.8.2   Explosion in the Surface Facilities and Injection Wellbores   216

10.8.3   Explosions in Injection/Production Wells   217

10.8.4   Oxygen Flammability   217

10.8.5   Oxygen Compatibility   217

10.8.6   Corrosion From Oxygen   218

10.8.7   Corrosion From CO2   218

10.9   Field Experience With High-Pressure Air Compressors   218

10.9.1   Medicine Pole Hills Unit, Bowman, North Dakota   218

10.9.2   Sloss, Nebraska   218

10.9.3   Heidelberg, Mississippi   218

10.9.4   Mitigating the Safety Risks   219

10.9.5   Required Surveillance   219

10.9.6   Ignition Issues   220

10.9.7   Compression Equipment   221

10.10   Integrated Developments   222

10.11   Upgrading   223

10.11.1   Sulfur and Coke Coproducts   225

10.11.2   Conversion Landscape   225

10.11.3   Upgrading Practices   225

10.11.4   Secondary Upgrading Process   225

10.11.5   “Integration” Technologies   225

10.11.6   In-Field Heavy-Oil Upgrading   225

10.11.7   Refining Challenges   225

 

Chapter 11 Shale Oil Recovery   227

11.1   Nanopore System   227

11.2   Shale Fluid Properties   231

11.3   Proposed Enhanced-Oil-Recovery Methods   232

11.3.1   Gas Injection in Fractured Tight Rocks   233

11.3.2   Use of CO2 Thickeners for Improved Hydraulic Fracturing With Liquid CO2   236

11.3.3   Chemical Injection   237

11.3.4   Steam or Air Injection   237

11.3.5   Surfactant Imbibition   237

11.4   Summary   237

 

Nomenclature                             

References     243

Appendix A Calculation of Steam Distillation Yield  267

Appendix B Example Problems 273

Appendix C Reservoir Modeling Checklist  279

Index        283

Preview Low-Energy Processes for Unconventional Oil Recovery by downloading the PDF below.

Low-Energy Processes for Unconventional Oil Recovery is available in print, Adobe Digital Edition, Adobe Digital Edition Rental, print and Adobe Digital Edition set, and Amazon Kindle and Apple iBook formats.