Table of Contents
Preface
Chapter 1 The Challenges of Unconventional Oil Recovery
1 1.1 Overview 1
1.1.1 Unconventional Hydrocarbons 1
1.1.2 Unconventional Oil Resource Base 2
1.1.3 Natural Bitumen and Extra-Heavy Oil 4
1.1.4 Oil Shale 4
1.1.5 Problems With Unconventional Oil 5
1.1.6 Development Planning 8
1.1.7 Technology Landscape for Heavy-Oil and Bitumen Production 9
1.1.8 Effectiveness of Current Depletion Technologies 11
1.1.9 Integrated Approach to Heavy-Oil Production 11
1.1.10 Monograph Summary 11
Chapter 2 Unconventional Oil Recovery Methods 13
2.1 Introduction 13
2.2 Primary Recovery 13
2.3 Enhanced Oil Recovery 15
2.3.1 Steam 15
2.3.2 Thermal Recovery Mechanisms 19
2.3.3 Polymer Floods 23
2.3.4 Solvent Injection 23
2.3.5 Other methods 24
2.4 Recovery Sequencing 24
2.5 Resource Screening 24
2.5.1 Thermal Recovery 25
2.5.2 Steam Injection 25
2.5.3 Air Injection 26
2.5.4 Application 27
Chapter 3 Fluid and Rock Properties 29
3.1 Introduction 29
3.2 Oil-Phase Properties 29
3.2.1 What Makes a Heavy Oil So Viscous? 29
3.2.2 The Role of Solution Gas 31
3.2.3 The Role of Asphaltenes and Maltenes 32
3.2.4 The Role of Organic Acids and Bases 32
3.2.5 Oil Shale Properties 34
3.3 Oil-Phase Characterization 34
3.3.1 Crude-Oil Description 35
3.3.2 Estimation of the Steam Distillation Yield 36
3.3.3 Comparison With the Published Results 38
3.3.4 Calculation of the Molecular Weight of the Distillate 41
3.3.5 Effect of Steam Distillation Efficiency 42
3.4 Rock Properties 45
3.4.1 Volumetric Heat Capacity 45
3.4.2 Thermal Conductivity 46
3.4.3 Porosity and Permeability 47
3.5 The Role of Wettability 47
3.6 The Role of Mineral Solubility 48
3.7 Other Properties 49
Chapter 4 Cold Heavy-Oil Production 51
4.1 Introduction 51
4.2 Cold Heavy-Oil Production Mechanisms 51
4.3 Production Behavior in Cold Heavy-Oil Production With Sand 55
4.4 The SuperSump Concept 56
4.5 Cold Heavy-Oil Production With Sand—Case Studies 58
4.5.1 Kuwait 58
4.5.2 Alaska 58
4.5.3 Sudan 60
4.6 Cold Heavy-Oil Production With Sand Modeling 61
4.7 Cold Heavy-Oil Production Optimization 63
Chapter 5 Cold Enhanced Recovery 67
5.1 Waterflooding Heavy- and Viscous-Oil Reservoirs 67
5.1.1 Mobility Ratio Effects 67
5.1.2 Viscous Instability 68
5.1.3 Fractional Flow Calculations 69
5.1.4 Viscous-Oil Analog Fields 70
5.2 Polymer Flooding 71
5.2.1 Polymer Displacement Efficiency 75
5.2.2 Screening Criteria for Polymer Flooding 78
5.2.3 Field Application of Polymer Flooding 78
5.3 Emulsion Flooding 80
5.4 Gas or Water-Alternating-Gas Injection 83
5.4.1 Screening Criteria for CO2 Injection 85
5.5 Voidage-Replacement Ratio 86
Chapter 6 Enhanced Steam Injection 89
6.1 Cyclic Steam and Steamflooding 89
6.1.1 Wellbore Heat Losses 89
6.1.2 Carbon Intensity 90
6.2 Steam Foam 91
6.3 Steam-Assisted Gravity Drainage 93
6.3.1 Mathematical Derivation 93
6.3.2 Factors Affecting SAGD Performance 94
6.3.3 Surveillance Techniques 97
6.3.4 SAGD Optimization 98
6.3.5 Numerical Modeling of SAGD With Solvents 109
6.4 Steam-Assisted Gravity Drainage With Noncondensible Gas 113
6.4.1 SAGD Optimization With Air Injection 113
6.5 Solvent-Based Recovery Processes 114
6.5.1 Vapor Extraction 114
6.5.2 Nsolv 114
Chapter 7 Enhanced Air Injection 117
7.1 Introduction 117
7.2 The Benefits of Air Injection 118
7.3 Process Mechanisms 119
7.3.1 In-Situ Combustion 119
7.3.2 High-Pressure Air Injection 120
7.3.3 Fuel Combustion 120
7.3.4 Thermal Alteration 121
7.3.5 Low-Temperature Oxidation 122
7.3.6 Steam Distillation and Light-Oil Stripping 124
7.3.7 Application to Light Oil 125
7.3.8 Spontaneous Ignition 126
7.3.9 Impact of Pressure on Displacement Mechanisms 126
7.4 Process Implementation 127
7.4.1 Screening 127
7.4.2 Engineering Estimation 128
7.4.3 Laboratory Experimentation 131
7.4.4 Fluid Characterization 134
7.5 Numerical Modeling 136
7.5.1 Reaction Model 136
7.5.2 Simulation of Combustion-Tube Runs 138
7.5.3 Simulation Results 138
7.5.4 Scaling the Combustion-Tube Results 139
7.6 Economic Feasibility 139
7.7 Pilot Testing 140
7.8 Field Applications 141
7.8.1 Design Features of Canadian ISC Projects 141
7.8.2 Injection Schemes 142
7.8.3 Suplacu de Barcau Field, Romania 143
7.8.4 Balol and Santhol Fields, India 143
7.8.5 Hybrid Processes 144
7.8.6 Post-Cold-Heavy-Oil-Production-With-Sand and Post-SAGD Combustion 144
7.8.7 In-Situ Upgrading 145
7.9 Air Injection in Light-Oil Reservoirs 145
7.9.1 High-Pressure Air Injection 146
7.9.2 Enriched-Air Injection 148
7.9.3 Cyclic Combustion 148
7.9.4 Other Fields 149
7.10 Process Characteristics and Monitoring 149
7.11 Performance Estimation 150
7.11.1 Nelson and McNeil Methodology 150
7.11.2 Gates-Ramey Correlation 150
7.12 Field Case Histories 152
7.12.1 Medicine Pole Hills Unit Air Injection Project 152
7.12.2 West Hackberry Air Injection Project 154
7.12.3 Morgan Pressure Cycling In-Situ Combustion Project 158
7.12.4 Holt Sand Unit Oxygen Injection 163
7.13 Environmental Considerations 172
7.13.1 Thermal Efficiency 172
7.13.2 CO2 Production 173
7.13.3 CO2 Sequestration 173
7.13.4 Larger Applicability 173
7.14 Promising Research Potential 174
7.15 Conclusions 174
Chapter 8 Alternative Sources for Heating Reservoirs 175
8.1 Nuclear Energy 175
8.1.1 Economic and Cost Issues 176
8.1.2 Public Perception of Nuclear Energy 176
8.2 Solar Thermal Enhanced Oil Recovery 177
8.3 Downhole Heating 180
8.4 In-Situ Upgrading 183
8.4.1 In-Situ Conversion Process 183
8.4.2 ElectrofracTM Process 184
8.4.3 Conduction, Convection, and Reflex Process 185
8.5 Electromagnetic Heating 185
8.5.1 Energy Equivalence 185
8.5.2 Methods for Field Application 186
8.5.3 Analytical Modeling of Electromagnetic Heating Process 187
8.6 How To Increase the Energy Efficiency of New Processes 189
Chapter 9 Challenges in Reservoir Simulation of Unconventional Technologies 191
9.1 Introduction 191
9.2 Mass and Heat Transport 191
9.2.1 Auxiliary Relationships 193
9.2.2 Stiffness and Grid-Size Limitations 194
9.3 Inclusion of Geomechanics 195
9.3.1 Decoupled Flow and Geomechanics 196
9.3.2 Explicitly Coupled Flow 196
9.3.3 Iteratively Coupled Flow 196
9.3.4 Fully Coupled Flow 197
9.4 Designing the Simulation Model 197
9.4.1 Number of Dimensions 198
9.4.2 Selection of Pseudocomponents199
9.5 Simulating Processes for Unconventional Systems 199
9.5.1 Chemical Flooding 199
9.5.2 In-Situ Combustion 200
9.5.3 Steam Injection 201
9.5.4 Steam-Assisted-Gravity-Drainage Simulation 203
9.5.5 Cold Heavy-Oil Production With Sand 203
9.5.6 Electromagnetic Heating Simulation 204
9.6 History Matching 205
Chapter 10 Facilities and Operations 207
10.1 Introduction 207
10.2 Processing Technology Challenges 207
10.3 Steam Generation, Delivery, and Transportation 208
10.4 Water Supply and Treatment for Steam Generation 210
10.5 CO2 Sequestration and Management 210
10.5.1 Life-Cycle Emissions 210
10.6 Gathering Systems and Export Pipelines 211
10.6.1 Oil/Water Separation 213
10.7 Surface Sand Management 213
10.8 Air and Gas Compression 215
10.8.1 Explosion in the Reservoir 216
10.8.2 Explosion in the Surface Facilities and Injection Wellbores 216
10.8.3 Explosions in Injection/Production Wells 217
10.8.4 Oxygen Flammability 217
10.8.5 Oxygen Compatibility 217
10.8.6 Corrosion From Oxygen 218
10.8.7 Corrosion From CO2 218
10.9 Field Experience With High-Pressure Air Compressors 218
10.9.1 Medicine Pole Hills Unit, Bowman, North Dakota 218
10.9.2 Sloss, Nebraska 218
10.9.3 Heidelberg, Mississippi 218
10.9.4 Mitigating the Safety Risks 219
10.9.5 Required Surveillance 219
10.9.6 Ignition Issues 220
10.9.7 Compression Equipment 221
10.10 Integrated Developments 222
10.11 Upgrading 223
10.11.1 Sulfur and Coke Coproducts 225
10.11.2 Conversion Landscape 225
10.11.3 Upgrading Practices 225
10.11.4 Secondary Upgrading Process 225
10.11.5 “Integration” Technologies 225
10.11.6 In-Field Heavy-Oil Upgrading 225
10.11.7 Refining Challenges 225
Chapter 11 Shale Oil Recovery 227
11.1 Nanopore System 227
11.2 Shale Fluid Properties 231
11.3 Proposed Enhanced-Oil-Recovery Methods 232
11.3.1 Gas Injection in Fractured Tight Rocks 233
11.3.2 Use of CO2 Thickeners for Improved Hydraulic Fracturing With Liquid CO2 236
11.3.3 Chemical Injection 237
11.3.4 Steam or Air Injection 237
11.3.5 Surfactant Imbibition 237
11.4 Summary 237
Nomenclature
References 243
Appendix A Calculation of Steam Distillation Yield 267
Appendix B Example Problems 273
Appendix C Reservoir Modeling Checklist 279
Index 283